Commit 3e8ee7aa authored by Thomas Planche's avatar Thomas Planche

first version of the tutorial part 2 is ready!

parent 4a340b16
$const #x_step 10.
$const #z_step 10.
$const #x_width 130.*2
$const #z_width 220*2
$const #x_step 10. //[mm]
$const #z_step 10. //[mm]
$const #x_width 130.*2 //[mm]
$const #z_width 200*2 //[mm]
GRID X0=-#x_width/2. Y0=0 Z0=-#z_width/2. DXG=#x_step DYG=1 DZG=#z_step NXG=INT(#x_width/#x_step)+1 NYG=1 NZG=INT(#z_width/#z_step)+1 FILE='/home/tplanche/text/designs/HRS/opera/multipole/from_Carla/test.table' BINARY=NO FORMAT=2 F1=X UNIT1G=LENGU F2=Y UNIT2G=LENGU F3=Z UNIT3G=LENGU F4=Ex UNIT4G=1 F5=Ey UNIT5G=1 F6=Ez UNIT6G=1 F7=INT((X+#x_width/2.)/#x_step) UNIT7G=1 F8=1 UNIT8G=1 F9=INT((Z+#z_width/2.)/#z_step) UNIT9G=1 UNIT10G=1 UNIT11G=1 UNIT12G=1
......
../../TOSCA+MAP2D-E/twomasses.eps
\ No newline at end of file
No preview for this file type
......@@ -117,13 +117,32 @@
\includegraphics*[width=1.0 \linewidth]{figure/multipole-schematic}
\caption{schematic of TRIUMF HRS multipole corrector, viewed in the direction of the reference trajectory. Each electrode (red) is $200$\,mm in length.}\label{fig:multipole-schematic}
\end{figure}
The multipole is to be placed halfway between the two dipoles. The multipole was modelled using, again, {\tt OPERA-3D}.
The multipole is to be placed halfway between the two dipoles. The multipole was modelled using, again, {\tt OPERA-3D}. For a discussion on how to figure out the voltage to be applied to each individual pole, see~\cite{sehayek2018multipole}.
The following field map was produced from the {\tt OPERA} model\footnote{The map was generated using an {\tt OPERA} 'comi' script similar to this one: \href{https://gitlab.triumf.ca/beamphys/hrs/blob/master/TOSCA+MAP2D-E/geneMultipole2DMap.comi}{\tiny https://gitlab.triumf.ca/beamphys/hrs/blob/master/TOSCA+MAP2D-E/geneMultipole2DMap.comi}}:\\
\href{https://gitlab.triumf.ca/beamphys/hrs/raw/master/TOSCA+MAP2D-E/Multipole2D.map?inline=false}{\small https://gitlab.triumf.ca/beamphys/hrs/blob/master/TOSCA+MAP2D-E/Multipole2D.map}\\
For a discussion on how to figure out the voltage to be applied to each individual pole, see~\cite{sehayek2018multipole}.
\href{https://gitlab.triumf.ca/beamphys/hrs/raw/master/TOSCA+MAP2D-E/Multipole2D.map?inline=false}{\scriptsize https://gitlab.triumf.ca/beamphys/hrs/blob/master/TOSCA+MAP2D-E/Multipole2D.map}\\
This map is 40\,cm long and 26\,cm wide. The step size is 10\,cm in both directions.
To track through this electric field map, we will to use the {\tt zgoubi} command {\tt 'MAP2D-E'}:
\begin{lstlisting}
'MAP2D-E'
0 0 !print the map (no print = 0); output partile trajector (print=2)
1.0e-8 0.1 0.1!Normalization factor: V/m to MV/cm; Xstep cm; Ystep cm
HEADER_0 !Only works n=0 header lines, not sure why, Francois?
41 27 !Number of longitudinal and horizontal nodes
Multipole2D.map !map file name
0 0. 0. 0.
4
1.
1 0. 0. 0.
\end{lstlisting}
A 2-dimensional rectangular field map was obtained using the {\tt OPERA} command
{\it Assignment: insert the {\tt 'MAP2D-E'} command between the two dipoles in your zgoubi.dat file. Run it. You should obtain a plot like~\ref{fig:final}.}
\begin{figure}[htb]
\centering
\includegraphics*[width=1.0 \linewidth]{figure/final}
\caption{Two beams with a relative mass difference of 1/20\,000 through the HRS, using a 2-D field map produced from the final version of the dipole {\tt OPERA-3D} model, and a 2-D field map for the electrostatic multipole corrector.}\label{fig:final}
\end{figure}
That's it: the two beams in~\cref{fig:final} are well separated. You can now use the image slit to get rid off the unwanted isotope(s), and produce an isotopically pure beam.
\bibliographystyle{elsarticle-num}
\bibliography{Mybib,AllDN,bib}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment